can shed light on future developments. A holistic approach to discuss the future devices
that can stem from these technologies is made in sufficient detail. Finally, based on our
understanding, we propose and identify the areas which would be the hotspot of research
in the upcoming years. We also point out some road maps to help young researchers
solve specific problems in this domain.
References
1. R. Das, F. Moradi, H. Heidari, Biointegrated and wirelessly powered implantable brain devices: A
review, IEEE Trans. Biomed. Circuits Syst. 14 (2020) 343–358. 10.1109/TBCAS.2020.2966920
2. B. Shi, Z. Liu, Q. Zheng, J. Meng, H. Ouyang, Y. Zou, D. Jiang, X. Qu, M. Yu, L. Zhao, Y. Fan,
Z.L. Wang, Z. Li, Body-integrated self-powered system for wearable and implantable ap
plications, ACS Nano. 13 (2019) 6017–6024. 10.1021
3. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G.
Li, Y. Yang, A polymer tandem solar cell with 10.6% power conversion efficiency, Nat.
Commun. 4 (2013) 1–10. 10.1038/ncomms2411
4. N. Chodankar, C. Padwal, H.D. Pham, K. (Ken) Ostrikov, S. Jadhav, K. Mahale, P.K.D.V.
Yarlagadda, Y.S. Huh, Y.K. Han, D. Dubal, Piezo-supercapacitors: A new paradigm of self-
powered wellbeing and biomedical devices, Nano Energy. 90 (2021) 106607. 10.1016/
J.NANOEN.2021.106607
5. F.R. Fan, Z.Q. Tian, Z. Lin Wang, Flexible triboelectric generator, Nano Energy. 1 (2012)
328–334. 10.1016/J.NANOEN.2012.01.004
6. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays,
Science (80-.). 312 (2006) 242–246. 10.1126/SCIENCE.1124005
7. A. Das, D. Pamu, A comprehensive review on electrical properties of hydroxyapatite based
ceramic composites, Mater. Sci. Eng. C. 101 (2019) 539–563. 10.1016/j.msec.2019.03.077
8. Y. Zhang, X. Gao, Y. Wu, J. Gui, S. Guo, H. Zheng, Z.L. Wang, Self-powered technology based on
nanogenerators for biomedical applications, Exploration. 1 (2021) 90–114. 10.1002/EXP.20210152
9. U. Erturun, A.A. Eisape, S.H. Kang, J.E. West, Energy harvester using piezoelectric nano
generator and electrostatic generator, Appl. Phys. Lett. 118 (2021) 063902. 10.1063/5.0030302
10. M. Venkatesan, W.C. Chen, C.J. Cho, L. Veeramuthu, L.G. Chen, K.Y. Li, M.L. Tsai, Y.C. Lai,
W.Y. Lee, W.C. Chen, C.C. Kuo, Enhanced piezoelectric and photocatalytic performance of
flexible energy harvester based on CsZn0.75Pb0.25I3/CNC–PVDF composite nanofibers,
Chem. Eng. J. (2021) 133620. 10.1016/J.CEJ.2021.133620
11. L. Ye, L. Chen, J. Yu, S. Tu, B. Yan, Y. Zhao, X. Bai, Y. Gu, S. Chen, High-performance
piezoelectric nanogenerator based on electrospun ZnO nanorods/P(VDF-TrFE) composite
membranes for energy harvesting application, J. Mater. Sci. Mater. Electron. 2021 324. 32
(2021) 3966–3978. 10.1007/S10854-020-05138-0
12. G. Zhang, Q. Liao, Z. Zhang, Q. Liang, Y. Zhao, X. Zheng, Y. Zhang, G. Zhang, Q. Liao, Z.
Zhang, Q. Liang, Y. Zhao, X. Zheng, Y. Zhang, Novel piezoelectric paper-based flexible
nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose, Adv. Sci. 3 (2016)
1500257. 10.1002/ADVS.201500257
13. D. Tan, J. Zhou, K. Wang, X. Zhao, Q. Wang, D. Xu, Bow-type bistable triboelectric nano
generator for harvesting energy from low-frequency vibration, Nano Energy. 92 (2022)
106746. 10.1016/J.NANOEN.2021.106746
14. M.N. Hasan, S. Sahlan, K. Osman, M.S. Mohamed Ali, Energy harvesters for wearable electro
nics and biomedical devices, Adv. Mater. Technol. 6 (2021) 2000771. 10.1002/ADMT.202000771
15. C.R. Bowen, J. Taylor, E. Leboulbar, D. Zabek, A. Chauhan, R. Vaish, Pyroelectric materials
and devices for energy harvesting applications, Energy Environ. Sci. 7 (2014) 3836–3856. 10.
1039/C4EE01759E
338
Bioelectronics